If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+12v-9=0
a = 5; b = 12; c = -9;
Δ = b2-4ac
Δ = 122-4·5·(-9)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18}{2*5}=\frac{-30}{10} =-3 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18}{2*5}=\frac{6}{10} =3/5 $
| -8y-11=y-7 | | -1x-2x+1*3)/52x+(-3x6/52x-2=0 | | 75+2x+15=180 | | 40-4x=0 | | -8x^2+6x-4=0 | | 4(x+2)+x+1=2x-3+3(x+4 | | 15a+14a=39-17 | | 14-6y+8=4y-34-3y | | 5y+17=77 | | 15u=14+8u | | 3n+2=-8 | | -3−7u=-3u−7 | | -3-4x=-11 | | 7+10n+2n=-5+10n | | 9v=v+48 | | X2-y2=19 | | 26=y/4-15 | | -2j+10=-j | | 9v=v | | 4t+7=t | | 2(2y+4)=4(y+7)-2 | | -1−5u=-10−2u | | (5^x)(5^16)=5^64 | | 64+-1y-10=64 | | x-13=-1+8x | | 62=-12n+14 | | 7=-16x^2+30x+6 | | x-13=1+8x | | 8b-9=9b+2 | | x-13=2+8x | | Y+10=64+-1y | | -13=3n+17 |